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Abstract

Speaker recognition is an emerging task in both commercial and forensic applications. Nevertheless, while in certain

applications we can estimate, adapt or hypothesize about our working conditions, most of the commercial applications

and almost the whole of the forensic approaches to speaker recognition are still open problems, due to several reasons.

Some of these reasons can be stated: environmental conditions are (usually) rapidly changing or highly degraded,

acquisition processes are not always under control, incriminated people exhibit low degree of cooperativeness, etc.,

inducing a wide range of variability sources on speech utterances. In this sense, real approaches to speaker identi®cation

necessarily imply taking into account all these variability factors. In order to isolate, analyze and measure the e�ect of

some of the main variability sources that can be found in real commercial and forensic applications, and their in¯uence

in automatic recognition systems, a speci®c large speech database in Castilian Spanish called AHUMADA (/aum�ada/)

has been designed and acquired under controlled conditions. In this paper, together with a detailed description of the

database, some experimental results including di�erent speech variability factors are also presented. Ó 2000 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Speaker recognition is a biometric character-
ization process aimed at the identi®cation of peo-
ple by their voices. Fingerprint or iris analyses are
good examples of other biometric approximations

to person identi®cation, where the test sample is
directly matched with the known pattern. How-
ever, voice identi®cation must be accomplished
from a di�erent point of view, in an analogous
way to face recognition or graphological analysis
of handwriting, as signal variability (written signs,
facial features or speech characteristics) incorpo-
rates to the identi®cation process an additional
level of complexity (Champod and Meuwly,
1998).

In this context, coping with real commercial
and forensic recognition implies dealing with
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speech variability (Acero, 1993; Junqua and
Haton, 1996). Regarding speaker identity, several
factors of variability must be taken into account:
· Peculiar intra-speaker variability (manner of

speaking, age, gender, inter-session variability,
dialectal variations, emotional condition, etc.).

· Forced intra-speaker variability (Lombard ef-
fect, external-in¯uenced stress, cocktail-party
e�ect).

· Channel-dependent external in¯uences (kind of
microphone, bandwidth and dynamic range re-
duction, electrical and acoustical noise, rever-
beration, distortion, etc.).

Consequently, delimiting the problem of speech
variability, together with analyzing the quantita-
tive results of speaker recognition systems will lead
to an integral and comprehensive approach to
commercial and forensic speaker recognition.

Following this perspective, a speaker recogni-
tion-oriented large database (Boves et al., 1994;
Godfrey et al., 1994; Naik, 1994; Gibbon et al.,
1997) called AHUMADA, 1 has been designed
and acquired, involving 104 male speakers. The
resulting data comprises more than 15 GB of re-
corded material (Ortega-Garcia et al., 1998), and
incorporates several speech variability factors.

The present contribution is organized as fol-
lows. Section 2 describes the AHUMADA speech
corpus, enumerating the designed tasks, distri-
bution of ages and time interval between ses-
sions. Section 3 describes the technical features
related to AHUMADA database: microphones
and audio equipment, room acoustics and signal-
to-noise ratio (recorded and enhanced), and
speech intelligibility. Section 4 describes the au-
tomatic speaker veri®cation system employed to
validate the database. In Section 5, several
speaker veri®cation experiments are presented,
analyzing the e�ect of some variability factors.
Section 6 describes some of the database exten-
sions that are being considered, and some per-
spectives regarding forensic applications of
speaker veri®cation.

2. AHUMADA large speech corpus

2.1. Design of the spoken tasks

The speech corpus has been designed regarding
many sources of variability, allowing us to focus
on them and to study their underlying e�ects in
speaker recognition systems. Some examples in-
cluded in AHUMADA corpus are:
· In situ recordings and telephone speech.
· Read texts at di�erent speech rate.
· Read speech versus spontaneous speech.
· Di�erent microphones and telephone handsets.
· Inter-session variability in six di�erent recording

sessions.
· Dialectal variations of speakers (which may be

even di�erent for one particular speaker when
reading or naturally speaking).

· Fixed utterances for all speakers through all ses-
sions versus speci®c utterances for each speaker
in each session.

In order to obtain the referred intra-speaker vari-
ability factors, the enrolled speakers were re-
quested to utter the following:
(a) 24 isolated digits, discarding the ®rst and the

last two of them due to prosodic consider-
ations. The remaining 20 digits consist in two
repetitions of isolated digits (from 0 to 9).

(b) 10 digit strings consisting of 10 digits each, be-
ing the ®rst ®ve strings identical to all speakers
through all recording sessions, and the last ®ve
strings speci®c for each speaker for all sessions.

(c) 10 phonologically and syllabically balanced
phrases of 8±12 word length. These utterances
were identical to all speakers through all ses-
sions.

(d) One phonologically and syllabically balanced
text, of about 180 words (more than 1 minute
of duration), read at a normal speaking rate.
This text was ®xed for all speakers through
all sessions.

(e) Two repetitions of the previous ®xed text, ask-
ing the speakers to read it at a fast and at a
slow speaking rate. (This task was only re-
quested in sessions 1, 3 and 5, where in situ stu-
dio recordings were accomplished.)

(f) One speci®c text, di�erent from speaker to
speaker and from session to session, for each

1 In honor of the founder of the Guardia Civil Corps, the

Duke of Ahumada.
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speaker. This text was randomly selected from
novels and newspapers, and at least 1 minute
of this kind of speech is available.

(g) More than 1 minute of spontaneous speech,
asking every speaker to narrate something fa-
miliar to them, avoiding long pauses and
hesitations, in a descriptive manner. Some
paintings and pictures were available, and is-
sues like ``describe your last holidays'', ``de-
scribe the place where you live/were born'',
etc., were also suggested.

2.2. Phonological and syllabic balance

Tasks (c) and (d) have been speci®cally de-
signed in order to reproduce the frequency of
occurrence of phonemes and syllabic schemes
mostly found in spoken Castilian Spanish. The
selected lexicon corresponds to the most usual in
Spanish. The ÔstandardÕ frequency of occurrence
(from now on called ``Reference'') used in the
design phase was measured over an oral corpus of
more than 20 000 words (Juilland and Chang-
Rodriguez, 1969; Quilis and Esgueva, 1980;
Guerra, 1983). In task (c), the total number of
phonemes is 409, while the correlation coe�cient
(Pearson test) between Spanish standard phono-
logical occurrence and the designed utterances
was 0.9966. In the same task, the total number of
syllables was 185 with a syllabic correlation co-
e�cient of 0.9963.

In task (d), a ®xed text for all speakers with
about 180 words, the total number of phonemes is
712. The correlation coe�cient between Spanish
standard phonological occurrence and the de-
signed text was 0.9988. Moreover, the total num-
ber of syllables in it was 305, with a correlation
coe�cient in this case of 0.9960. In both tasks, the
level of signi®cance is 0.001 (the maximum at-
tainable). For tasks (c) and (d), Figs. 1±3 show
frequency of occurrence of phonemes, syllabic
groups and stress patterns, respectively.

2.3. Distribution of ages

In order to determine an adequate age distri-
bution of speakers in the database, sociological

Fig. 1. Frequency of occurrence (%) of phonemes in designed

tasks (c) and (d) compared to ``Reference'' distribution. BDG�

stands for cumulative ocurrence of /B/, /D/ and /G/.

Fig. 2. Frequency of occurrence (%) of syllabic groups in de-

signed tasks (c) and (d), compared to Reference distribution.

Fig. 3. Frequency of occurrence (%) of stress patterns found in

tasks (c) and (d), compared to Reference distribution.
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implications of technology should be taken into
account, as equi-distribution of ages may not re-
spond to a real age distribution of users in a spe-
ci®c commercial application. On the other hand, in
forensic applications criminals are also unequally
distributed in age.

In our case, age distribution of speakers in
AHUMADA database ®ts real police data of
people under arrest. This is the reason why more
weight has been applied to the range of ages be-
tween 28 and 42 years, as Fig. 4 shows.

2.4. Time interval between sessions

As inter-session variability is a crucial factor to
cope with in speaker recognition-oriented data-
bases, at least a time interval separation of 11 days
between equivalent sessions (on one side, micro-
phone sessions 1, 3 and 5, and on the other side,
telephone sessions 2, 4 and 6) was disposed.

Recordings began in June 1997, with micro-
phone session 1. Fig. 5 shows time intervals be-
tween in situ (microphone) sessions. In relation to
the ®rst telephone session (session 2), 73% of re-
cordings were done within 15 days interval from
session 1. Speci®cally, 36% were accomplished the
same day of session 1, with a maximum time in-
terval (100% of recordings) of 40 days, where time
intervals between telephone sessions are shown in
Fig. 6.

3. Speech acquisition

In this section, the most relevant technical fea-
tures speci®ed in the acquisition of AHUMADA
speech corpus are presented. The description of
these technical features will give a complete idea
about the audio conditions and characteristics of
AHUMADA. The description comprises the type
of microphones and audio equipment used; the
acoustics of the recording room (basically, rever-
beration time and equivalent noise level); the
signal-to-noise ratio of the signal acquired;
the high-pass discrete-time ®lter used to remove

Fig. 4. Age distribution of the male population of AHU-

MADA.

Fig. 5. Time interval of microphone sessions 3 and 5 related to

®rst microphone session (session 1). Results are presented in

intervals of 10 days, and in % referred to the total number of

recordings within each session.

Fig. 6. Time interval of telephone sessions 4 and 6 referred to

®rst telephone session (session 2). Results are presented in

intervals of 10 days, and in % related to the total number of

recordings within each session.
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the low-frequency noise components; and, ®nally,
the speech intelligibility measured in the recording
room.

3.1. Recording microphones and audio equipment

As it has been previously mentioned, six re-
cording sessions were established. Sessions 1, 3 and
5 were in situ recorded in a quiet studio-like room
and supervised by a trained operator. In each of
these in situ recordings, two di�erent input chan-
nels were simultaneously used: in one of them, the
same microphone was used for all sessions; in the
other, di�erent microphones were used from ses-
sion to session.

The notation used to specify both microphones
in each case is MICn_1 and MICn_2, where n
corresponds to one of the three possible sessions.
The list of the used microphones is the following:
· MIC1_1, MIC3_1 and MIC5_1 correspond to

the same microphone, namely SONY ECM-
66B, lapel unidirectional electret type, at about
10 cm from the speaker mouth.

· MIC1_2 is an AKG D80S dynamic cardioid mi-
crophone, placed on a desk at about 30 cm from
speaker.

· MIC3_2 is an AKG C410-B head-mounted dy-
namic microphone.

· MIC5_2 is a low-cost Creative Labs desk micro-
phone for PC sound-card applications.

In sessions 2, 4 and 6, conventional telephone line
was used to collect the data. In session 2, every
speaker was calling from the same telephone,
namely T2_1, in an internal-routing call. In session
4, speakers were requested to make a local call
from their own home telephone, T4_1, trying to
search a quiet environment (they were asked to be
alone in a closed room). In session 6, a local call
was made from a quiet room, using 10 randomly
selected standard handsets, T6_0 to T6_9 (Rey-
nolds, 1997a). In this last telephone recording
session, simultaneous high-quality microphone
acquisition was performed (MIC6_2), using the
same lapel type SONY microphone as in MIC1_1,
MIC3_1 and MIC5_1.

In each session, both microphones (connected
through a high-quality Behringer MIC502 pre-
ampli®er) and telephone lines (connected through

a speci®c adapter) were supplied to a professional
DAT device (Tascam DA-30 MKII), where digital
recording at 44.1 kHz was accomplished.

3.2. Recording-room acoustics

A quiet room was selected to accomplish the
recordings of sessions 1, 3, 5 and 6 (where session 6
stands for simultaneous telephone and micro-
phone speech acquisition). No anechoic chamber
or acoustic cabin was used, as it was desired to
have real-environment recording conditions (in
terms of reverberation), although maintaining low
noise levels. To avoid undesired room reverbera-
tion, several acoustic panels were placed around
the desk where recordings were performed.

Speci®c equipment have been used in order to
accomplish several acoustic measurements, show-
ing good acoustic conditions for the speech re-
cording sessions. An equivalent noise level of only
27 dBA was measured, and the upper limit for the
reverberation time in a third-octave band analysis
was 0.48 s. Reverberation time variation with
frequency is presented in Fig. 7.

3.3. SNR

Signal-to-noise ratio (SNR) is one of the most
important features in the process of acquiring and
characterizing a speech database, as this parameter
represents an objective relation between desired
and undesired signal variances in the log domain,

Fig. 7. Reverberation time versus frequency in the recording

room.
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expressed in decibels (dB). The referred AHU-
MADA tasks have been acquired under ÔcleanÕ
conditions, delimiting thus a range of 35±45 dB
SNR values.

In this case, SNR has been speci®cally calcu-
lated as the log ratio between rms power of the
speech signal and rms power of the noise. Here, it
is considered ÔnoiseÕ the non-speech part of the
analyzed segment. The problem arises when trying
to calculate the power of the speech signal, due to
the implicit non-stationary nature of speech. This
non-stationarity leads to rapid changes of signal
levels, often in a dynamic range of 30±40 dB.
Continuously-spoken segments of at least 3 s have
been selected in order to calculate the rms power
of the whole segment as rms power of speech.

Setting input speech peaks to ÿ5=ÿ 10 dB
(referred to 0 dB, maximum input level of the ac-
quisition board), rms speech power can be mea-
sured in the margin of ÿ12=ÿ 20 dB. After the
application of the high-pass FIR ®lter (see Section
3.4), rejecting therefore the low components of the
noise present, an average SNR value of 40.1 dB is
obtained, for 10 randomly selected speakers and
tasks through all the microphone and telephone
speech. Anyway, this is an average value, and
Fig. 8 shows the exact value for every di�erent
input. It also shows comparative values when no
high-pass ®lter is applied to the input signal.

3.4. High-pass ®ltering

The high-pass discrete-time ®lter employed in
order to remove the low frequency components of
undesired signals and noise is a linear phase, ®nite
impulse response (FIR) causal ®lter, with cuto�
frequency of 65 Hz. It has been designed through
the window method, using Hamming windowing.
In this way, the result imposes odd number
of coe�cients with even symmetry �h�n� �
h�N ÿ nÿ 1��, obtaining a linear phase, constant
group delay type I FIR ®lter. 1001 coe�cients
have been used, obtaining 20 dB of attenuation at
the always problematical frequency of the main
power supply (50 Hz at the recording room), and
more than 40 dB below 40 Hz.

3.5. Speech intelligibility

It is widely assumed that Speech Transmission
Index (STI) is an excellent approximation for de-
termining objective speech intelligibility measures.
In order to evaluate STI, it is necessary to calculate
previously Modulation Transfer Function (MTF).

MTF measures the relation between emitted
and received modulation indexes of a set of sig-
nals. This set consists in 7 di�erent octave-band
®ltered pink noise signals from 125 Hz to 8 kHz,
amplitude modulated by 16 di�erent tones (mod-
ulation frequencies), ranging from 0.5 to 16 Hz in
third-octave band separation. 98 values are thus
obtained, each of them varying from 0 to 1. STI is
then directly calculated from these MTF values
(Steeneken and Houtgast, 1985).

In our study, Rapid STI, namely RASTI, has
been used. RASTI is based in only 9 MTF values
rather than the complete 98 MTF values. These 9
values correspond to 4 modulation frequencies for
the octave band centered at 500 Hz and 5 modu-
lation frequencies for the octave band centered at
2 kHz. Fig. 9 shows these 9 MTF measures. The
tendency in this ®gure shows only a little degra-
dation of intelligibility, primarily due to reverber-
ation conditions and not to noise.

RASTI values over 0.75 are equivalent to ex-
cellent intelligibility. Table 1 shows RASTI values
measured in six di�erent points of the recording
room. Both RASTI and MTF were obtained using

Fig. 8. Average SNR obtained at the di�erent input channels

involved in AHUMADA, with and without high-pass ®ltering

of the signal. T6_n stands for an average value from T6_0 to

T6_9.
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a Br�uel & Kjñr RASTI type 3361 measuring
equipment.

4. Speaker veri®cation system

4.1. Description of the overall system

In order to perform some speaker recognition
tests over the available data, a text-independent
automatic speaker veri®cation system, based in
Gaussian Mixture Models (GMM) (Reynolds,
1992; Ortega-Garcia and Gonzalez-Rodriguez,
1994, 1997), has been employed. Tests have been
accomplished over a subset of (randomly selected)
25 speakers from the total number of 104 available
speakers. All studio-recorded speech material used
for training and testing has been down-sampled to
8 kHz (from the original sampling frequency of
16 kHz). Cepstral coe�cients derived from LPC
analysis (LPCC) of order 10 have been used as
feature vectors. Frames of 30 ms taken every 15 ms,
with Hamming windowing and pre-emphasis
factor of 0.97 are used as input to the system.

In order to train the system, the ®rst 40 s of the
read ®xed text (task 2.1.d) from session 1 have
been used, generating one model per speaker. All
veri®cation tests have been performed using these
25 models. For both training and testing, silences
longer than 0.8 s have been removed. As in some
cases there was not enough remaining speech ma-
terial for the testing phase, overlapping between
consecutive testing sequences has been forced: 0%
for 5 s sequences, 50% for 10 s sequences and
66.6% for 15 s sequences. All 25 speakers were
used as claimants for their corresponding models
and as impostors for the rest of models.

4.2. Likelihood-domain normalization of scores

Tests without normalization and with likeli-
hood-domain normalization (Rosenberg et al.,
1992; Furui, 1994; Matsui and Furui, 1994) have
been accomplished. As the density at point X (in-
put sequence) for all speakers other than the true
speaker, S, is frequently dominated by the density
for the nearest reference speaker, nearest reference
speaker normalization criterion (1) has been
applied:

log L�X � � log p�X jS � Sc�
ÿ max

S2ref ; S 6�Sc

log p�X jS�; �1�

where Sc means claimed speaker model. Balance
between false rejection error and false alarm errors
is required in order to calculate equal error rate
(EER) for each speaker. Average EER through all
speakers for each case is presented in the next
section.

5. Speaker veri®cation benchmark results

5.1. Results obtained

As it has been already mentioned, model
training has been performed using about 40 s of
read speech per speaker from task 2.1.d, using
MIC1_1. The remaining speech from this task
(same session, same microphone) has been used for
initially testing the veri®cation system, in order to

Fig. 9. Measure of intelligibility in terms of MTF.

Table 1

RASTI values measured at 6 di�erent points of the recording

room

Point #1 #2 #3 #4 #5 #6

RASTI 0.80 0.81 0.79 0.73 0.75 0.75
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establish some baseline results for the rest of test-
ing experiments.

Baseline results in Fig. 10 do not include nor-
malization. When likelihood-domain normaliza-
tion was applied, EERs less than 0.5% were found
in all referred cases.

Table 2 shows three di�erent veri®cation ex-
periments, namely Test 1, 2 and 3. Test 1 shows
veri®cation results when testing was accomplished
with spontaneous speech (task 2.1.g) from session
1 using MIC1_1. In Test 2, same training text used
for training and testing (task 2.1.d) of session 1,
but considering the e�ect of using the second mi-
crophone (MIC1_2). Finally, Test 3 presents EER
for testing sequences of spontaneous speech (task
2.1.g) of session 5 with MIC5_1.

5.2. Analysis of speaker veri®cation rates

The speaker veri®cation experiments described
show excellent results when same session, same
microphone, same task, and enough amount of
testing data (at least 15 s) is used: with score-do-
main normalization, less than 0.5% EER has been
obtained. These two last mentioned parameters,

namely testing sequence length and likelihood-
domain normalization, produce, with no doubt,
signi®cant improvements in all cases. When just
the kind of speech is changed, from read speech to
spontaneous descriptive speech (Test 1), EER in-
creases up to (in the best case) 2.1% which is still
an acceptable limit. Nevertheless, if we use read
speech for testing but we change the microphone
used (Test 2) we get a best EER of 4.3%. If we
focus on inter-session variability (Test 3) with
spontaneous testing speech, 8.5% EER is obtained
as best.

The results addressed may only give a certain
initial idea of the possibilities that AHUMADA
database can o�er in speaker recognition tasks. In
this sense, the use of more e�cient features, in-
cluding D and DD cepstra, D and DD energy; the
use of channel compensating techniques, like
CMN, RASTA and others; the use of multi-
session and multi-task training; the use of more
sophisticated normalization schemes (Gonzalez-
Rodriguez and Ortega-Garcia, 1997); the use of
general population (background) models
(Reynolds, 1997b); and the testing results for all
104 speakers, will focus the work to be carried out
over the multi-variability data of AHUMADA
corpus.

6. Conclusions and perspectives

6.1. AHUMADA extensions and sub-corpora

At the moment, also about 100 female speakers
have been recorded through the same multi-session
procedure. Shortly, 150 male and 150 female
additional speakers will be recorded in a single-
session procedure in order to be used as impostors,
and added to the initial corpus described in this
paper.

The underlying general idea in designing and
acquiring all this speech material in a particular
speaker recognition perspective has been to allow
a better and more accurate understanding and
evaluation of the techniques for identifying people
by their voices. Inside this complex process,
AHUMADA database will contribute to concen-
trate on several specially relevant issues. Some of

Fig. 10. Baseline veri®cation results with both 64 mixture and

128 mixture GMMs when no normalization is applied.

Table 2

Speaker veri®cation results in terms of EER (%)a

EER (%) 5 s 10 s 15 s

No

norm

Norm No

norm

Norm No

norm

Norm

Test 1 10.1 5.4 6.7 3.0 4.9 2.1

Test 2 15.1 6.1 13.0 4.8 12.7 4.3

Test 3 15.0 8.6 14.8 8.6 14.6 8.5

a All experiments show results for test sequences of 5, 10 and

15 s, with/without likelihood normalization scheme.
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these, in both commercial and forensic applica-
tions, can be enumerated: the use of di�erent
speaker and background models for training and
testing; the use of di�erent channel-compensation
schemes; the availability of target-speakers and
impostors in automatic veri®cation systems; the in-
depth analysis of forensic-speci®c speech variabil-
ity, or the ability to select certain populations to
prepare ``voice line-ups''.

It is important to mention that some special
sub-corpora are being acquired in the same pro-
ject, namely, GSM mobile telephone speech, and
bilingual speakers (Castilian Spanish and Catalan
languages). It is also foreseen to acquire some
special sub-corpora in the near future: these will
include di�erent emotional conditions, commercial
broadcasting AM/FM/TV simultaneous transmis-
sions, other bilingual speakers (Castilian Spanish
and Basque/Galician languages), brothers and
twins, and Lombard and noisy speech.

6.2. Forensic perspectives

Real forensic scenarios cannot be forced or even
simulated. Those situations in which people com-
mit a crime cannot be substituted by any kind of
laboratory or controlled environment. However, it
is becoming increasingly usual to ®nd audio
physical traces (telephone calls, recorded tapes,
security surveillance recordings, etc.). Hence, au-
tomatic systems for speaker identi®cation in fo-
rensic tasks constitute remarkable scienti®c
analysis tools, as far as they provide an objective
measure concerning identity resemblance.

However, speaker veri®cation in forensic tasks
is still an open ®eld, in the sense that for many real
cases speech technology may not lead to absolute
identi®cation certainty. Anyway, this certainty is
not always a must in forensic cases, as automatic
scores may serve for being aware or concentrate
e�orts in some reliable direction. In consequence,
forensic cases may not always require ÔhardÕ iden-
ti®cation decisions (accepted/rejected), but also
ÔsoftÕ decisions derived from careful analysis of the
scores provided by the system.

To summarize, it can be a�rmed that the ap-
plication of state-of-the-art automatic identi®ca-
tion systems, with their ability to treat non-speci®c

or neglected massive speech utterances in a general
probabilistic manner, without a priori discarding
unclear or ambiguous evidences (as is sometimes
done in human non-automatic supervised pro-
cesses) constitute an essential and indispensable
practice in modern forensic applications of speaker
recognition.
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